MIT Study: Marshes provide cost-effective coastal protection

Durch | Oktober 23, 2024

Images of coastal houses being carried off into the sea due to eroding coastlines and powerful storm surges are becoming more commonplace as climate change brings a rising sea level coupled with more powerful storms. In the U.S. alone, coastal storms caused $165 billion in losses in 2022.

Now, a study from MIT shows that protecting and enhancing salt marshes in front of protective seawalls can significantly help protect some coastlines, at a cost that makes this approach reasonable to implement.

The new findings are being reported in the journal Communications Earth and Environment, in a paper by MIT graduate student Ernie I. H. Lee and professor of civil and environmental engineering Heidi Nepf. This study, Nepf says, shows that restoring coastal marshes “is not just something that would be nice to do, but it’s actually economically justifiable.” The researchers found that, among other things, the wave-attenuating effects of salt marsh mean that the seawall behind it can be built significantly lower, reducing construction cost while still providing as much protection from storms.

“One of the other exciting things that the study really brings to light,” Nepf says, “is that you don’t need a huge marsh to get a good effect. It could be a relatively short marsh, just tens of meters wide, that can give you benefit.” That makes her hopeful, Nepf says, that this information might be applied in places where planners may have thought saving a smaller marsh was not worth the expense. “We show that it can make enough of a difference to be financially viable,” she says.

The study was based on computer modeling of waves propagating over different shore profiles, using the morphology of various salt marsh plants — the height and stiffness of the plants, and their spatial density — rather than an empirical drag coefficient. “It’s a physically based model of plant-wave interaction, which allowed us to look at the influence of plant species and changes in morphology across seasons,” without having to go out and calibrate the vegetation drag coefficient with field measurements for each different condition, Nepf says.

The researchers based their benefit-cost analysis on a simple metric: To protect a certain length of shoreline, how much could the height of a given seawall be reduced if it were accompanied by a given amount of marsh? Other ways of assessing the value, such as including the value of real estate that might be damaged by a given amount of flooding, “vary a lot depending on how you value the assets if a flood happens,” Lee says. “We use a more concrete value to quantify the benefits of salt marshes, which is the equivalent height of seawall you would need to deliver the same protection value.”

They used models of a variety of plants, reflecting differences in height and the stiffness across different seasons. They found a twofold variation in the various plants’ effectiveness in attenuating waves, but all provided a useful benefit.

Credits pexelscom

Written by David L. Chandler, MIT News Office

Autoren-Avatar
LabNews Media LLC
LabNews: Biotech. Digital Health. Life Sciences. Pugnalom: Environmental News. Nature Conservation. Climate Change. augenauf.blog: Wir beobachten Missstände
Autor: LabNews Media LLC

LabNews: Biotech. Digital Health. Life Sciences. Pugnalom: Environmental News. Nature Conservation. Climate Change. augenauf.blog: Wir beobachten Missstände