
Ein Forschungsteam des Max-Planck-Instituts für Chemie in Mainz und der Universität Heidelberg hat mithilfe des deutschen Umweltsatelliten EnMAP (Environmental Mapping and Analysis Program) erstmals gleichzeitig die beiden zentralen Luftschadstoffe Kohlendioxid (CO?) und Stickstoffdioxid (NO?) in Abgasfahnen von Kraftwerken beobachtet – mit einer bislang unerreichten räumlichen Auflösung von nur 30 Metern. Die neu entwickelte Methode erlaubt es, industrielle Emissionen aus dem All hochpräzise zu erfassen und atmosphärische Prozesse detailliert zu analysieren.

Kohlendioxid (CO?) und Stickoxide (NO?) zählen zu den bedeutendsten anthropogenen Luftschadstoffen – mit nicht komplett absehbaren Folgen für Klima, Gesundheit und Luftqualität. Satellitenmessungen gelten als zentrale Methode zur unabhängigen Emissionsüberwachung. Sie stoßen aber bisher an Grenzen: Viele Sensoren verfügen über eine zu grobe räumliche Auflösung, um punktuelle Emissionsquellen wie Kraftwerke zuverlässig zu erfassen. Zusätzlich wirken sich atmosphärische Prozesse, etwa Wolken oder die chemische Weiterreaktion von Stickoxiden störend auf die Auswertung aus. Im Falle von CO? kommt erschwerend hinzu, dass die hohen Hintergrundwerte die vergleichsweise schwachen Emissionssignale oft überdecken.
Da NO? und CO? gemeinsam emittiert werden, werden NO?-Messungen häufig auf Basis bekannter Emissionsverhältnisse zur Abschätzung von CO?-Emissionen genutzt. Bislang fehlt jedoch ein Instrument, das beide Gase gleichzeitig mit hoher räumlicher Auflösung erfassen kann. Die nun vorgestellte Methode schließt diese Lücke: Erstmals lassen sich beide Gase gleichzeitig und mit hoher Auflösung direkt über den Quellen messen – und ihr Verhältnis präzise bestimmen. Das eröffnet neue Möglichkeiten für eine unabhängige und transparente satellitengestützte Emissionsüberwachung.
Atmosphärische Spurengase wie CO? und NO? hinterlassen im Sonnenlicht charakteristische Absorptionsmuster, die mit Spektrometern nachgewiesen werden können. Für satellitengestützte Messungen kommen üblicherweise Instrumente mit sehr hoher spektraler Auflösung zum Einsatz. Sie können die feinen Absorptionsstrukturen der Gase im reflektierten Sonnenlicht analysieren, erreichen dabei jedoch meist nur eine räumliche Auflösung von drei bis fünf Kilometern.
Der deutsche Erdbeobachtungssatellit EnMAP wurde hingegen ursprünglich für die Fernerkundung von Landoberflächen konzipiert. Er liefert Aufnahmen mit außergewöhnlich hoher räumlicher Detailgenauigkeit von 30 x 30 Metern, verfügt jedoch nur über eine vergleichsweise geringe spektrale Auflösung.
Die neue Studie zeigt nun, dass – entgegen bisheriger Annahmen – selbst mit einem eigentlich nicht für atmosphärische Messungen entwickelten Instrument wie dem Satelliten EnMAP verlässliche Messungen von Spurengasen möglich sind. „Es ist uns gelungen, mithilfe der EnMAP-Daten die Verteilung von CO? und NO? in Abgasfahnen einzelner Kraftwerke zu bestimmen, etwa über Anlagen in Saudi-Arabien sowie in der südafrikanischen Highveld-Region, einem der weltweit größten Emissions-Hotspots“, erklärt Christian Borger, Erstautor der Studie und bis vor kurzem Postdoc in der Satellitenfernerkundungsgruppe am Max-Planck-Institut für Chemie. Er arbeitet nun beim Europäischen Zentrum für mittelfristige Wettervorhersage (ECMWF) in Bonn.
Somit können mithilfe des EnMAP-Satelliten CO?- und NOx-Emissionen einzelner Kraftwerke gleichzeitig und hochaufgelöst bestimmt werden. Darüber hinaus lassen sich daraus NO?/CO?-Verhältnisse ableiten, die Rückschlüsse auf Technologie, Effizienz und Betriebsweise der Anlagen ermöglichen. Perspektivisch könnten solche Verhältnisse genutzt werden, um CO?-Emissionen allein auf Basis von NO?-Daten abzuschätzen.
Zudem ermöglichen die Daten neue Einblicke in die chemische Umwandlung von NO zu NO? innerhalb von Abgasfahnen. Dieser zentrale Prozess in der atmosphärischen Chemie konnte bislang nur durch aufwendige Flugzeugmessungen erfasst werden. Die Nutzung von Satellitendaten hat große Vorteile, da sie eine weltweite, einheitliche und vergleichbare Erfassung industrieller Schadstoffemissionen ermöglicht.
„Unsere Studie zeigt, wie Satelliten mit hoher räumlicher Auflösung künftig zur gezielten Überwachung industrieller Emissionen beitragen können – auch ergänzend zu großflächigen Missionen wie dem europäischen Satelliten CO2M“, resümiert Gruppenleiter Thomas Wagner. Der Umweltsatellit EnMAP eröffne neue Perspektiven für ein globales, satellitengestütztes Monitoringsystem für Luftschadstoffe und Treibhausgase.
Originalpublikation
Borger, C., Beirle, S., Butz, A., Scheidweiler, L. O., and Wagner, T.: High-resolution observations of NO2 and CO2 emission plumes from EnMAP satellite measurements, Environ. Res. Lett., 20, 044034, 2025. DOI: 10.1088/1748-9326/adc0b1
Lesen Sie auch
Interview: «Geoengineering löst das Problem des Klimawandels nicht» | Pugnalom
Treibhausgasforschung: Ab sofort ist die Messung von Methan direkt möglich | Pugnalom

