A research team from Shanxi Agricultural University conducted this study (DOI: 10.1093/hr/uhad229), which was published in Horticulture Research on November 8, 2023. Focusing on the physiological and molecular responses of tomato seedlings to boron deficiency, the study used hydroponic systems to simulate stress conditions. The research offers fresh insights into how tomatoes adapt to boron scarcity, providing new avenues for enhancing the resilience of this key crop against nutrient deficiencies.
The study reveals that boron deficiency drastically hinders tomato root growth by suppressing genes crucial for cell wall structure, particularly those involved in producing pectin and cellulose. It also disrupts nitrogen metabolism, while shifting carbon pathways to the pentose phosphate pathway to meet energy demands under stress. The research highlights increased levels of copper, manganese, and iron, which help maintain chlorophyll content and support photosynthesis during the early stages of boron shortage. Additionally, the study shows a significant reduction in key growth hormones like jasmonic acid, abscisic acid, and salicylic acid, further impacting plant growth.
Dr. Jin Xu, the lead researcher, commented, „This study reveals critical molecular adaptations in tomatoes responding to boron deficiency. By understanding these mechanisms, we can pave the way for developing crop varieties that are more resilient to nutrient stress. These findings are a step forward in enhancing boron use efficiency, which is vital for sustainable agricultural practices.“

